A Guide for Preventing Dust Explosions in Hazardous Areas

Industries worldwide continuously strive to understand and prevent dust explosions, recognizing the critical role of safety and compliance. A proactive approach is essential, as it safeguards people, environment, and assets. By staying informed, implementing best practices, and promoting a strong safety culture, organizations can significantly minimize explosion risks and create safer workplaces.

In this blog you will learn why a dust explosion is hazardous, what are the requirements for a dust explosion, how to prevent dust explosions in hazardous areas, which industries are most affected with the possibility of dust explosions and lastly, what are the equipment sub-groups for combustible dusts and the ignition temperatures from dusts.

Learn about:

 

 

The fire triangle consists of fuel (dust), oxygen, and an ignition source (heat) for dust explosion

What is a Dust Explosion?

A dust explosion is a rapid combustion of fine particles suspended in the air within an enclosed space. It occurs when a combustible dust, such as grain, coal, metal, or chemical powder, mixes with oxygen and is ignited by a heat source, for instance: a spark, flame, or hot surface. The explosion happens in two stages:

  • Primary Explosion – The initial ignition of suspended dust, which creates a pressure wave.
  • Secondary Explosion – The primary explosion disturbs more dust, leading to a much larger and more destructive explosion.

Any combustible material can burn rapidly when in a finely divided form. If such a dust is suspended in air in the right concentration, under certain conditions, it can become explosive. Even materials that do not burn in larger pieces (such as aluminum or iron), given the proper conditions, can be explosive in dust form.

What are the Key Requirements for a Dust Explosion?

Explosions from combustible dust are violent and often devastating events that occur when fine, dry particles of combustible materials and explosive dust, become suspended in air and then ignite, leading to a rapid release of energy, and a primary explosion.

Key elements necessary for such an explosion include fuel (the dust), oxygen (present in the air), and an ignition source (typically a spark, open flame, or even hot surfaces).

The fire triangle for dust explosion must have present three elements:

  • Fuel – A combustible dust
  • Oxygen –  Sufficient air supply
  • Ignition Source – Heat, sparks, or open flames

So if you have these three elements at the same time, in the right concentration, you get a fire which is essentially a dust explosion.

The dust explosion pentagon is an expansion of the fire triangle as it relates to combustible dust. For a dust explosion to occur, five elements must be present:

  • Fuel – A combustible dust
  • Oxygen – Sufficient air supply
  • Ignition Source – Heat, sparks, or open flames
  • Dispersion – Dust must be suspended in the air
  • Confinement – A closed or semi-closed space to trap pressure

The sequence of events leading to an explosion involves the dispersion of combustible dust particles in the air, the formation of a dust cloud, ignition, and the subsequent rapid combustion of the combustible dust cloud, resulting in pressure waves, fireballs, and potential damage.

If you need explosion-protected equipment or technology to prevent dust explosions, BARTEC’s product portfolio covers everything.

Ignition Temperature of Dusts (Layer and Cloud)

For different types of dust, the method for determining the ignition temperature has been unified and coded in document EN-ISO/IEC 80079-20-2.  Please note that dust in its deposited form (layer) has a different ignition (read: smouldering) temperature than in its stirred form (cloud).

The permissible surface temperature for those parts of systems and equipment is determined by subtracting 75 K (Tmax = T5 mm - 75 K) from the smouldering temperature value determined for the 5 mm dust layer and by taking 2/3 (Tmax, = 2/3TCloud) of the ignition temperature value determined for the dust cloud.

The permissible surface temperature of the equipment shall always be smaller than the lowest outcome of the Tmax. values determined by using above mentioned formulas. Temperature classes are not defined for dust, so a concrete type of dust must always be considered. The parameters are made available in comprehensive tables, laboratories determine the values on request, and a small, non-official overview is contained in the downloadable brochure ‘basic concepts’ (edition 14).

Equipment Sub-groups for Combustible Dusts

From the point of view of electrical engineering, it is not possible to classify dust as precisely as the chemically defined gases and vapours. For that reason, it is considered sufficient to divide the dust according to type and conductivity. EN-ISO/IEC 80079-20-2 contains the test method to determine the specific electrical resistance of dust. Dust is divided into 3 sub-groups:

  • IIIA - combustible flyings
  • IIIB - non-conductive combustible dust with electrical resistivity > 1 kΩ·m
  • IIIC - conductive combustible dust, with electrical resistivity ≤ 1 kΩ·m

Take a look at the Groups classification of electrical safety equipment:

Group I

Equipment intended for use in mines susceptible to firedamp (flammable mixture of gases naturally occurring in a mine).  

Group II

Equipment intended for use in areas with an explosive gas atmosphere other than mines susceptible to firedamp. Group II equipment is subdivided into three sub-groups:

Group IIA—Atmospheres containing propane.

Group IIB—Atmospheres containing ethylene.

Group IIC—Atmospheres containing hydrogen or acetylene.  

Group III

Equipment intended for use in areas with an explosive dust atmosphere other than mines susceptible to firedamp. Group III equipment is subdivided into three sub-groups:

Group IIIA—Atmospheres containing combustible flyings.

Group IIIB—Atmospheres containing non-conductive dust.

Group IIIC—Atmospheres containing conductive dust

Examples of the Assignment of Gases and Vapours to the Respective Temperature Classes and Explosion Sub-groups

Examples of the ignition temperatures of different types of dust
Designation
of the solid
material
Ignition
temperature
EN-ISO/IEC
80079-20-2
T5 mm layer (°C)
Ignition
temperature
EN-ISO/IEC
80079-20-2
TCloud (°C)
Permissible surface temperature of the equipment
lowest value of the calculation (T5 mm layer - 75 K) and 2/3*TCloud
> 300
...450
> 280
...300
> 260
...280
> 230
...260
> 215
...230
>200
...215
> 180
...200
> 165
...180
> 160
...165
> 135
...160
Dust from natural materials (examples)
Cotton 350 560     275              
Brown coal 225 380                   150
Cellulose 370 500   295                
Cereals 290 420           215        
Sawdust (wood) 300 400         225          
Cocoa 460 580 385                  
Cork 300 470         225          
Fooder concentrate 295 525         220          
Milk powder 340 440     265              
Paper 300 540         225          
Soya 245 500               170    
Starch 290 440           215        
Hard coal 245 590               170    
Tobacco 300 450         225          
Tea 300 510         225          
Wheat floor 450 480 320                  
Dust of chemical technical products (examples)
Cellulose ether 275 330             200      
Isosorbide dinitrate 240 220                   146
Unvulcanised rubber 220 460                   145
Petroleum coke 280 690           205        
Polyvinyl acetate 340 500     265              
Polyninyl chloride 380 530 305                  
Soot 385 620 310                  
Laminated plastic 330 510       255            
Sulphur 280 280             186      
Metal dust (examples)
Aluminium 280 530             205      
Bronze 260 390               185    
Iron 300 310             206      
Magnesium 410 610 335                  
Manganese 285 330             210      

 

Find here more about the hazardous zone classification.

Prevention of Hazardous Dust Explosions

Combustible dust hazards remain a significant concern in the modern life.

A wide range of industries, including oil and gas, pharmaceuticals, energy, chemical processing, generate dust as a byproduct of their operations. These industries face the ongoing challenge of managing the risks associated with dust.

To address the hazards associated with combustible dust, regulatory bodies worldwide have established safety standards and guidelines. In the United States, the Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) provide industry-specific regulations, including NFPA 652, which outlines best practices for explosion prevention and mitigation. Similarly, in Europe, the ATEX directives govern the safe handling of explosive atmospheres, ensuring compliance with strict safety measures to protect workers and facilities, whereas IECEx, the IEC System for Certification to Standards Relating to Equipment for Use in Explosive Atmospheres provides a global system of approved certification bodies.

The prevention of explosions is a critical safety concern in various industries, and modern innovations have introduced a range of tools and technologies to address this issue. To reduce the risk of dust explosions, industries implement strict safety measures.

Prevention Measures:

  • Dust control – Regular cleaning to prevent accumulation
  • Proper ventilation – Reduce dust concentration in the air
  • Explosion-protected equipment – ATEX-rated or IECEx-certified devices
  • Ignition control – Avoid static electricity, sparks, and high heat
  • Monitoring & detection – Sensors for early detection of hazardous dust level
  • Equally important as technology is the training of personnel to recognize and address dust hazards. Proper training and education are key components of prevention.

Frequently Asked Questions (FAQ)

Can dust in the air make an explosion?

Yes, dust suspended in the air can cause an explosion if the right conditions are met. When fine, dry particles of a combustible material (such as grain, coal, wood, metal, or chemicals) become airborne in a confined space and come into contact with an ignition source, they can ignite and rapidly combust, resulting in a dust explosion.

Is dust combustible?

Yes, dust can be combustible, depending on its material. Many fine, dry particles can ignite and explode when dispersed in the air in the right concentration.

What makes dust combustible?

For dust to be considered combustible, it must:

  • Be made of flammable material (e.g., organic, metallic, or chemical substances).
  • Be fine enough to remain suspended in the air.
  • Have the right concentration in the air to support combustion.
  • Come into contact with an ignition source (e.g., sparks, flames, or hot surfaces).

 

What is dust explosion?

Dust explosion is an explosion that includes fuel (the dust), oxygen (present in the air), and an ignition source (typically a spark, open flame, or even hot surfaces). The fire triangle starts with fuel, oxygen, and an ignition source.

What are 5 requirements for dust explosion?

Dust explosion happens when you have:

  • Fuel – A combustible dust
  • Oxygen – Present in the air
  • Ignition Source – Such as a spark, flame, or hot surface
  • Dispersion – The dust must be airborne
  • Confinement – A confined or semi-confined space increases explosion pressure

How to prevent dust explosion?

You can prevent dust explosion with:

  • Dust control – Regular cleaning to prevent accumulation
  • Proper ventilation – Reduce dust concentration in the air
  • Explosion-protected equipment – ATEX-rated or IECEx-certified device
  • Ignition control – Avoid static electricity, sparks, and high heat
  • Monitoring & detection – Sensors for early detection of hazardous dust level
  • Contacting BARTEC experts to provide you guidance and expert advice and solutions based on your needs
Share this article